Lecture 10

Today [- Most figures from the Slides]

- Distance Estimation
- Wireless Sensing
- Dynamic Multipath

Time of Flight

C * delay ~ Distance
Phase $\mathrm{h}=\frac{-2 * \pi}{\lambda} * d \bmod 2 * \pi$
-> Find d
Multipath Effect
Multipath profile (Shortest path -> Direct path)
$h_{\lambda_{1}}=\alpha e^{-j \frac{2 * \pi}{\lambda_{1}} d}$
-> \$ h_\{\lambda_k\} = \alpha_k^j e^\{-j\frac\{2*\pi\}\{\lambda_k\}d_j\} \$
$\mathrm{P}(\mathrm{d})=\sum h_{\lambda_{k}} e^{+j \frac{2 * \pi}{\lambda_{k}} d}$-> Undo the Phase. If not line up, get a smaller and smaller value
$\mathrm{P}(\mathrm{d})=\sum_{k} \alpha_{k} e^{-j \frac{2 * \pi}{\lambda_{k}}\left(d_{1}-d\right)}$
Try different $\lambda_{k}, \sum_{k} \alpha_{k} e^{-j \frac{2 * \pi}{\lambda_{k}}}$ becomes really small, then adding up strong signals
Try different d get different multi-path profile
-> Canceling the imaging part and adding up the real part of the signal
Narrow bandwidth -> Resolution decrease
If the measurement is far away, distance ambiguity happens -> lose unambiguous range

WiTrack

WiVi:

Challenge:

- Wall reflection is $10,000 x$ stronger than any reflections coming from behind the wall
- Tracking people from the reflection

How can we eliminate the wall's reflection?
Idea: transmit two waves cancel each other when they reflect off static objects but not moving objects
Two transmit antennas and one receive antenna
$Y=h_{1} * x+h_{2} \alpha x$
$->\alpha=-\frac{h_{1}}{h_{2}}$

Received signal: $y=h_{1} x+\overrightarrow{h_{2} \alpha x}$

But people are moving. Therefore, the channel could not cancel out -> human signal will stay Why not subtract the range profile?
-> Dynamic Range of Rx
-> WiFi-based system: CFO/SFO

How can we track using Reflections?

Track Motion
Phase change over time

At different points in time, human reflects signal from different points in space

Direction of motion

WiTrack:

Distance $=$ Reflection time * speed of light
01: Transmit short pulse (accurate not enough) - need to sample at very high rate -> UWB

O2: FMCW: measure time by measuring frequency

- FMCW (Frequency modulated Continuous Wave)
- This is achieved by continuously varying the frequency of the transmitted signal by a modulating signal at a known rate over a fixed time period.

How do we measure $\delta \mathrm{F}$-> Reflection Time -> Distance?

Mapping Distance to Location

People on Ellipses

Dealing with multi-path - Dynamic Multipath

Humans reflect on static objects than on the receiver

- The shortest path should be the correct direct path

How can we deal with multi-path with multiple people?
Idea: Person is consistent across different vantage points, while multi-path is different from different vantage points

Combing across multiple vantage points (independent transmitter-receiver pairs)
How can we obtain 16 vantage points?
Naive -> 1 transmitter -> 16 Receiver

-> 4 Transmitter and 4 Receiver (need some time shift)

Ideally: 4 Transmitters and 4 Receivers

Same frequency band
Multi-User Localization (SNR getting worse if multiple people are present)
How can we localize the static user?

- Breathing and walking happen at different time scales

Problem: How do we use OFDM to do this? Since Wi-Fi normally does not do FMCW

